Will the MAX 8 Be Safe When Ungrounded?

posted by Wayne
May 24, 2019

When we board an airplane, we all hope that we have a “Sully” Sullivan at the controls.  Unfortunately, Sully has few equals.  At age 12, he was accepted into Mensa, and later graduated from the Air force Academy as the top pilot.  As a well-rounded young man in high school, he was first flutist in the school orchestra.

On our next flight, we could have a pilot who stayed up late watching a movie and was forth tubist.  Hopefully, he isn’t suffering from a hangover.  It happens.  With a good but imperfect pilot, we want to fly on a plane as perfect as man can make.  The Boeing MAX 8 could be that plane but currently falls far short of that lofty goal and upgraded software is not the answer.

According to data gathered by Airsafe.com, the 737 MAX is more than 25 times more likely to be involved in a fatal crash than the plane that is was designed to replace, the older versions of the 737.  The MAX’s main competition, the Airbus 319neo, 320neo and 321neo, has had no fatal crashes.  Why has the MAX been such a failure?  Read the article below and you might come to the view that Boeing’s management decided that money trumps safety.

Several weeks ago, we said that we would never fly on a MAX 8 unless major structural changes were made and that it is our opinion that software changes are not the answer to a basic design problem.

A few weeks ago, we posited that we would never again fly on a Boeing MAX 8 or 9 aircraft unless structural changes were made to the plane before bringing it back into service.

It appears that Boeing Aircraft Company, in cahoots with the FAA, is going to rope-a-dope us with the quick and dirty software solution to fix their flawed MAX 8 plane and will not make the required structural changes.  Software will not fix a basic design defect.

The following is an excerpt from an article by Matthew Yglesias of Vox News.

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Boeing’s effort to get the 737 Max approved to fly again, explained

A bigger problem than a software update.

By Matthew Yglesias  Apr 5, 2019, 10:30am EDT

On Thursday, Boeing for the first time officially took responsibility for the two crashes of 737 Max jets that got the planes grounded by regulators.

Claiming responsibility was part of an attempt to get the planes approved to fly again. Boeing was trying to say that it now understands why the planes crashes — flawed software — and has a plan in place to replace it with new software that will eliminate the problem and persuade regulators to get the planes off the ground. But then Friday morning, the company announced that it had found a second, unrelated software flaw that it also needs to fix and will somewhat delay the process of getting the planes cleared to fly again.

All of which, of course, raises the question of why such flawed systems were allowed to fly in the first place.

And that story begins nine years ago when Boeing was faced with a major threat to its bottom line, spurring the airline to rush a series of kludges through the certification process — with an underresourced Federal Aviation Administration (FAA) seemingly all too eager to help an American company threatened by a foreign competitor, rather than to ask tough questions about the project.

The specifics of what happened in the regulatory system are still emerging (and despite executives’ assurances, we don’t even really know what happened on the flights yet). But the big picture is coming into view: A major employer faced a major financial threat, and short-term politics and greed won out over the integrity of the regulatory system. It’s a scandal.

The 737 versus 320 rivalry, explained

There are lots of different passenger airplanes on the market, but just two very similar narrow-body planes dominate domestic (or intra-European) travel. One is the European company Airbus’s 320 family,  with models called A318, A319, A320, or A321 depending on how long the plane is. These four variants, by design, have identical flight decks, so pilots can be trained to fly them interchangeably.

The 320 family competes with a group of planes that Boeing calls the 737 — there’s a 737-600, a 737-700, a 737-800, and a 737-900 — with higher numbers indicating larger planes. Some of them are also extended-range models that have an ER appended to the name, and, as you would probably guess, they have longer ranges.

Importantly, even though there are many different flavors of 737, they are all in some sense the same plane, just as all the 320 family planes are the same plane. Southwest Airlines, for example, simplifies its overall operations by exclusively flying different 737 variants.

Both the 737 and the 320 come in lots of different flavors, so airlines have plenty of options in terms of what kind of aircraft should fly exactly which route. But because there are only two players in this market, and because their offerings are so fundamentally similar, the competition for this slice of the plane market is both intense and weirdly limited. If one company were to gain a clear technical advantage over the other, it would be a minor catastrophe for the losing company.

And that’s what Boeing thought it was facing.

The A320neo was trouble for Boeing

Jet fuel is a major cost for airlines. With labor costs largely driven by collective bargaining agreements and regulations that require minimum ratios of flight attendants per passenger, fuel is the cost center airlines have the most capacity to do something about. Consequently, improving fuel efficiency has emerged as one of the major bases of competition between airline manufacturers.

If you roll back to 2010, it began to look like Boeing had a real problem in this regard.

Airbus was coming out with an updated version of the A320 family that it called the A320neo, with “neo” meaning “new engine option.” The new engines were going to be more fuel-efficient, with a larger diameter than previous A320 engines, that could nonetheless be mounted on what was basically the same airframe. This was a nontrivial engineering undertaking both in designing the new engines and in figuring out how to make them work with the old airframe, but even though it cost a bunch of money, it basically worked. And it raised the question of whether Boeing would respond.

Initial word was that it wouldn’t. As CBS Moneywatch’s Brett Snyder wrote in December 2010, the basic problem was that you couldn’t slap the new generation of more efficient, larger-diameter engines onto the 737.

One of the issues for Boeing is that it takes more work to put new engines on the 737 than on the A320. The 737 is lower to the ground than the A320, and the new engines have a larger diameter.  So while both manufacturers would have to do work, the Boeing guys would have more work to do to jack the airplane up. That will cost more while reducing commonality with the current fleet. As we know from last week, reduced commonality means higher costs for the airlines as well.

Under the circumstances, Boeing’s best option was to just take the hit for a few years and accept that it was going to have to start selling 737s at a discount price while it designed a whole new airplane. That would, of course, be time-consuming and expensive, and during the interim, it would probably lose a bunch of narrow-body sales to Airbus.

The original version of the 737 first flew in 1967, and a decades-old decision about how much height to leave between the wing and the runway left them boxed out of 21st-century engine technology — and there was simply nothing to be done about it.

Unless there was.

Boeing decided to put on the too-big engines anyway

As late as February 2011, Boeing chair and CEO James McNerney was sticking to the plan to design a totally new aircraft.

“We’re not done evaluating this whole situation yet,” he said on an analyst call, “but our current bias is to move to a newer airplane, an all-new airplane, at the end of the decade, beginning of the next decade. It’s our judgment that our customers will wait for us.”

But in August 2011, Boeing announced that it had lined up orders for 496 re-engined Boeing 767 aircraft from five airlines.

It’s not entirely clear what happened, but, reading between the lines, it seems that in talking to its customers Boeing reached the conclusion that airlines would not wait for them. Some critical mass of carriers (American Airlines seems to have been particularly influential) was credible enough in its threat to switch to Airbus equipment that Boeing decided it needed to offer 737 buyers a Boeing solution sooner rather than later.

Committing to putting a new engine that didn’t fit on the plane was the corporate version of the Fyre Festival’s “let’s just do it and be legends, man” moment, and it unsurprisingly wound up leading to a slew of engineering and regulatory problems.

New engines on an old plane

As the industry trade publication Leeham News and Analysis explained earlier in March, Boeing engineers had been working on the concept that became the 737 Max even back when the company’s plan was still not to build it.

In a March 2011 interview with Aircraft Technology, Mike Bair, then the head of 737 product development, said that reengineering was possible.

“There’s been fairly extensive engineering work on it,” he said. “We figured out a way to get a big enough engine under the wing.”

The problem is that an airplane is a big, complicated network of interconnected parts. To get the engine under the 737 wing, engineers had to mount the engine nacelle higher and more forward on the plane. But moving the engine nacelle (and a related change to the nose of the plane) changed the aerodynamics of the plane, such that the plane did not handle properly at a high angle of attack. That, in turn, led to the creation of the Maneuvering Characteristics Augmentation System (MCAS). It fixed the angle-of-attack problem in most situations, but it created new problems in other situations when it made it difficult for pilots to directly control the plane without being overridden by the MCAS.

On Wednesday, Boeing rolled out a software patch that it says corrects the problem, and it hopes to persuade the FAA to agree.

But note that the underlying problem isn’t really software; it’s with the effort to use software to get around a whole host of other problems.

Recall, after all, that the whole point of the 737 Max project was to be able to say that the new plane was the same as the old plane. From an engineering perspective, the preferred solution was to actually build a new plane. But for business reasons, Boeing didn’t want a “new plane” that would require a lengthy certification process and extensive (and expensive) new pilot training for its customers. The demand was for a plane that was simultaneously new and not new.

But because the new engines wouldn’t fit under the old wings, the new plane wound up having different aerodynamic properties than the old plane. And because the aerodynamics were different, the flight control systems were also different. But treating the whole thing as a fundamentally different plane would have undermined the whole point. So the FAA and Boeing agreed to sort of fudge it.

The new planes are pretty different

As far as we can tell, the 737 Max is a perfectly airworthy plane in the sense that error-free piloting allows it to be operated safely.

But pilots of planes that didn’t crash kept noticing the same basic pattern of behavior that is suspected to have been behind the two crashes, according to a Dallas Morning News review of voluntary aircraft incident reports to a NASA database:

The disclosures found by the News reference problems with an autopilot system, and they all occurred during the ascent after takeoff. Many mentioned the plane suddenly nosing down. While records show these flights occurred in October and November, the airlines the pilots were flying for is redacted from the database.

These pilots all safely disabled the MCAS and kept their planes in the air. But one of the pilots reported to the database that it was “unconscionable that a manufacturer, the FAA, and the airlines would have pilots flying an airplane without adequately training, or even providing available resources and sufficient documentation to understand the highly complex systems that differentiate this aircraft from prior models.”

The training piece is important because a key selling feature of the 737 Max was the idea that since it wasn’t really a new plane, pilots didn’t really need to be retrained for the new equipment. As the New York Times reported, “For many new airplane models, pilots train for hours on giant, multimillion-dollar machines, on-the-ground versions of cockpits that mimic the flying experience and teach them new features” while the experienced 737 Max pilots were allowed light refresher courses that you could do on an iPad.

That let Boeing get the planes into customers’ hands quickly and cheaply, but evidently at the cost of increasing the possibility of pilots not really knowing how to handle the planes, with dire consequences for everyone involved.

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

What do you think?  Is Boeing guilty of criminal negligence or good bottom-line business practices?

Comments are closed.